Opera	Operations & Algebraic Thinking					
Indicator	Date	Date	Date	Date	Date	
	Taught	Retaught	Reviewed	Assessed	ReAssessed	
Use the four opera	tions with w	hole numbe	rs to solve p	roblems.		
4.OA.1. Interpret a multiplication						
equation as a comparison, e.g.,						
interpret $35 = 5 \times 7$ as a statement						
that 35 is 5 times as many as 7 and						
7 times as many as 5. Represent						
verbal statements of multiplicative						
comparisons as multiplication						
equations.						
4.OA.2. Multiply or divide to solve						
word problems involving						
multiplicative comparison, e.g., by					ļ	
using drawings and equations with						
a symbol for the unknown number						
to represent the problem,						
distinguishing multiplicative						
comparison from additive						
comparison.						
4.OA.3. Solve multistep word						
problems posed with whole						
numbers and having whole-number						
answers using the four operations,						
including problems in which						
remainders must be interpreted.						
Represent these problems using						
equations with a letter standing for						
the unknown quantity. Assess the						
reasonableness of answers using						
mental computation and						
estimation strategies including						
rounding.						
	miliarity with	factors and r	nultiples.			
4.OA.4. Find all factor pairs for a						
whole number in the range 1–100.						
Recognize that a whole number is a						
multiple of each of its factors.						
Determine whether a given whole						
number in the range 1–100 is a						
multiple of a given one-digit						
number. Determine whether a						
given whole number in the range						
1–100 is prime or composite.						

Indicator	Date	Date	Date	Date	Date	
	Taught	Retaught	Reviewed	Assessed	ReAssessed	
Generate and analyze patterns.						
4.OA.5. Generate a number or						
shape pattern that follows a						
given rule. Identify apparent						
features of the pattern that						
were not explicit in the rule						
itself. For example, given the						
rule "Add 3" and the starting						
number 1, generate terms in the						
resulting sequence and observe						
that the terms appear to						
alternate between odd and even						
numbers. Explain informally why						
the numbers will continue to						
alternate in this way.						

Number & Operations in Base Ten					
	<u>-</u>	Date	1	Data	Data
Indicator	Date Taught	Retaught	Date Reviewed	Date Assessed	Date ReAssessed
Generalize place valu					Herissesseu
4.NBT.1. Recognize that in a multi-	e understand		l algit willow	e mambers.	
digit whole number, a digit in one					
place represents ten times what it					
represents in the place to its right.					
For example, recognize that 700 ÷					
70 = 10 by applying concepts of					
place value and division.					
4.NBT.2. Read and write multi-digit					
whole numbers using base-ten					
numerals, number names, and					
expanded form. Compare two multi- digit numbers based on meanings of					
the digits in each place, using >, =,					
and < symbols to record the results					
of comparisons.					
4.NBT.3. Use place value					
understanding to round multi-digit					
whole numbers to any place.					
Use place value understanding an	d properties	of operation	ns to perform	n multi-digit	arithmetic.
4.NBT.4. Fluently add and subtract					
multi-digit whole numbers using the					
standard algorithm.					
4.NBT.5. Multiply a whole number of					
up to four digits by a one-digit whole					
number, and multiply two two-digit					
numbers, using strategies based on place value and the properties of					
operations. Illustrate and explain the					
calculation by using equations,					
rectangular arrays, and/or area					
models.					
4.NBT.6. Find whole-number					
quotients and remainders with up to					
four-digit dividends and one-digit					
divisors, using strategies based on					
place value, the properties of					
operations, and/or the relationship					
between multiplication and division.					
Illustrate and explain the calculation					
by using equations, rectangular					
arrays, and/or area models.					

Numbe	er & Oper	ations – F	ractions			
Grade 4 expectations in this domain are limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, 100.						
Indicator	Date	Date	Date	Date	Date	
	Taught	Retaught	Reviewed	Assessed	ReAssessed	
Extend understanding of fraction equivalence and ordering.						
4.NF.1. Explain why a fraction						
a/b is equivalent to a fraction (n						
$\times a$)/($n \times b$) by using visual						
fraction models, with attention						
to how the number and size of						
the parts differ even though the						
two fractions themselves are						
the same size. Use this principle						
to recognize and generate						
equivalent fractions.						
4.NF.2. Compare two fractions						
with different numerators and						
different denominators, e.g., by						
creating common denominators						
or numerators, or by comparing						
to a benchmark fraction such as						
1/2. Recognize that comparisons						
are valid only when the two						
fractions refer to the same						
whole. Record the results of						
comparisons with symbols >, =,						
or <, and justify the conclusions,						
e.g., by using a visual fraction						
model.						

Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
Build fractions from unit fraction	ns by applyi	ng and exte	nding previo	us understar	ndings of
ор	erations on	whole numb	oers.		
4.NF.3. Understand a fraction					
a/b with $a > 1$ as a sum of					
fractions 1/b.					
Understand addition and					
subtraction of fractions as joining					
and separating parts referring to the					
same whole.					
Decompose a fraction into a sum of					
fractions with the same					
denominator in more than one way,					
recording each decomposition by an					
equation. Justify decompositions,					
e.g., by using a visual fraction					
model. Examples: 3/8 = 1/8 + 1/8 +					
1/8; 3/8 = 1/8 + 2/8; 2 1/8 = 1 + 1 +					
1/8 = 8/8 + 8/8 + 1/8.					
Add and subtract mixed numbers					
with like denominators, e.g., by					
replacing each mixed number with					
an equivalent fraction, and/or by					
using properties of operations and					
the relationship between addition					
and subtraction.					
Solve word problems involving					
addition and subtraction of fractions					
referring to the same whole and					
having like denominators, e.g., by					
using visual fraction models and					
equations to represent the problem.					

	0.0	iue 4			
Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
4.NF.4. Apply and extend					
previous understandings of					
multiplication to multiply a					
fraction by a whole number.					
Understand a fraction a/b as a					
multiple of 1/b. For example, use a					
visual fraction model to represent					
$5/4$ as the product $5 \times (1/4)$,					
recording the conclusion by the					
equation $5/4 = 5 \times (1/4)$.					
Understand a multiple of a/b as a					
multiple of 1/b, and use this					
understanding to multiply a fraction					
by a whole number. For example,					
use a visual fraction model to					
express $3 \times (2/5)$ as $6 \times (1/5)$,					
recognizing this product as 6/5. (In					
general, $n \times (a/b) = (n \times a)/b$.)					
Solve word problems involving					
multiplication of a fraction by a					
whole number, e.g., by using visual					
fraction models and equations to					
represent the problem. For example,					
if each person at a party will eat 3/8					
of a pound of roast beef, and there					
will be 5 people at the party, how					
many pounds of roast beef will be					
needed? Between what two whole					
numbers does your answer lie?					

	0.0	iue -			
Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
Understand decimal not	ation for fra	ctions, and c	ompare deci	mal fraction	s.
4.NF.5. Express a fraction with					
denominator 10 as an					
equivalent fraction with					
denominator 100, and use this					
technique to add two fractions					
with respective denominators					
10 and 100. For example,					
express 3/10 as 30/100, and add					
3/10 + 4/100 = 34/100.					
4.NF.6. Use decimal notation for					
fractions with denominators 10					
or 100. For example, rewrite					
0.62 as 62/100; describe a					
length as 0.62 meters; locate					
0.62 on a number line diagram.					
4.NF.7. Compare two decimals					
to hundredths by reasoning					
about their size. Recognize that					
comparisons are valid only					
when the two decimals refer to					
the same whole. Record the					
results of comparisons with the					
symbols >, =, or <, and justify					
the conclusions, e.g., by using a					
visual model.					

Measurement and Data					
Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
Solve problems involving measur			f measurem	ents from a l	arger unit
	to a sma	aller unit.			
4.MD.1. Know relative sizes of					
measurement units within one					
system of units including km, m,					
cm; kg, g; lb, oz.; l, ml; hr, min,					
sec. Within a single system of					
measurement, express					
measurements in a larger unit in					
terms of a smaller unit. Record					
measurement equivalents in a					
two-column table. For example,					
know that 1 ft is 12 times as long as 1					
in. Express the length of a 4 ft snake as					
48 in. Generate a conversion table for feet and inches listing the number					
pairs (1, 12), (2, 24), (3, 36),					
4.MD.2. Use the four operations					
to solve word problems					
involving distances, intervals of					
time, liquid volumes, masses of					
objects, and money, including					
problems involving simple					
fractions or decimals, and					
problems that require					
expressing measurements given					
in a larger unit in terms of a					
smaller unit. Represent					
measurement quantities using					
diagrams such as number line					
diagrams that feature a					
measurement scale.					
4.MD.3. Apply the area and					
perimeter formulas for					
rectangles in real world and					
mathematical problems. For					
example, find the width of a					
rectangular room given the area of the					
flooring and the length, by viewing the					
area formula as a multiplication					
equation with an unknown factor.					

	Gra	ue 4			
Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
Re	epresent and	l interpret d	ata.		
4.MD.4. Make a line plot to					
display a data set of					
measurements in fractions of a					
unit (1/2, 1/4, 1/8). Solve					
problems involving addition and					
subtraction of fractions by using					
information presented in line					
plots. For example, from a line					
plot find and interpret the					
difference in length between the					
longest and shortest specimens					
in an insect collection.					
Geometric measurement	· understand	concents of	angle and m	l neasure angl	es
4.MD.5. Recognize angles as	diacistana	tonice pto or	angle and n	leasure angi	
geometric shapes that are					
formed wherever two rays share					
a common endpoint, and					
-					
understand concepts of angle					
measurement:					
An angle is measured with reference to a circle with its center at the					
common endpoint of the rays, by					
considering the fraction of the					
circular arc between the points					
where the two rays intersect the					
circle. An angle that turns through					
1/360 of a circle is called a "one-					
degree angle," and can be used to					
measure angles.					
An angle that turns through n one-					
degree angles is said to have an					
angle measure of n degrees.					

essed
gles.