CCSS Mathematics Standards Operations \& Algebraic Thinking Third Grade					
Indicator	Date Taught	Date Retaught	Date Reviewed	Date Assessed	Date Re-Assessed
Represent and solve problems involving multiplication and division.					
CCSS.MATH.CONTENT.3.OA.A. 1 Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.					
CCSS.MATH.CONTENT.3.OA.A. 2 Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div$ 8.					
CCSS.MATH.CONTENT.3.OA.A. 3 Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.					
CCSS.MATH.CONTENT.3.OA.A. 4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=_\div 3,6 \times 6=$?					
Understand properties of multiplication and the relationship between multiplication and division.					
CCSS.MATH.CONTENT.3.OA.B. 5 Apply properties of operations as strategies to multiply and divide. 2 Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) 3 $\times 5 \times 2$ can be found by $3 \times 5=15$, then 15 $\times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)$ $=40+16=56$. (Distributive property.)					
CCSS.MATH.CONTENT.3.OA.B. 6 Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .					

| Indicator | Date
 Taught | Date
 Retaught | Date
 Reviewed | Date
 Assessed | Date
 Re-Assessed |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CCSS.MATH.CONTENT.3.OA.C.7 Fluently
 multiply and divide within 100, using
 strategies such as the relationship between
 multiplication and division (e.g., knowing
 that 8 $\times 5=40$ one knows 40 $\div 5=8$ or
 properties of operations. By the end of
 Grade 3, know from memory all products of
 two one-digit numbers. | | | | | |
| Solve problems involving the four operations, and identify and explain patterns in arithmetic. | | | | | |

CCSS Mathematics StandardsNumber \& Operations in Base TenThird Grade					
matas		Omenememe	demememper	anemel	.

CCSS Mathematics Standards Number \& Operations - Fractions Third Grade					
Indicator	$\underset{\substack{\text { Date } \\ \text { Tuaght }}}{\substack{\text { ate }}}$	Date Retaught	Date Reviewed	Date Assessed	(oate
		digeof	numbers.		
CCSS.MATH.CONTENT.3.NF.A. 2 Understand a fraction as a number on the number line; represent fractions on a number line diagram.					
CCSS.MATH.CONTENT.3.NF.A.2.A Represent a fraction $1 / \mathrm{b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / \mathrm{b}$ and that the endpoint of the part based at 0 locates the number $1 / \mathrm{b}$ on the number line.					
CCSS.MATH.CONTENT.3.NF.A.2.B Represent a fraction a/b on a number line diagram by marking off a lengths $1 / \mathrm{b}$ from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a / b on the number line.					
CCSS.MATH.CONTENT.3.NF.A. 3 Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.					

mamm						
mammemmex						
mamm						
casmmeamamaname						
mamm						
memem						
mammex						
casmamamamamme						
\%memem						
\%ememememe						
Emammem						
2mamememe						
anmen						

Indicator	Date Taught	Date Retaught	Date Reviewed	Date Assessed	Date Re-Assessed
Geometric Measurement: understand concepts of area and relate area to multiplication and to addition. (continued)					
CCSS.MATH.CONTENT.3.MD.C. 7 Relate area to the operations of multiplication and addition.					
CCSS.MATH.CONTENT.3.MD.C.7.A Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.					
CCSS.MATH.CONTENT.3.MD.C.7.B Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.					
CCSS.MATH.CONTENT.3.MD.C.7.C Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $a \times b$ and $\mathrm{a} \times \mathrm{c}$. Use area models to represent the distributive property in mathematical reasoning.					
CCSS.MATH.CONTENT.3.MD.C.7.D Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.					
CCSS.MATH.CONTENT.3.MD.C. 8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.					

CCSS Mathematics Standards Geometry Third Grade					
Indicator	Date Taught	Date Retaught	Date Reviewed	Date Assessed	Date Re-Assessed
Reason with shapes and their attributes.					
CCSS.MATH.CONTENT.3.G.A. 1 Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.					
CCSS.MATH.CONTENT.3.G.A. 2 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.					

