Operations & Algebraic Thinking					
Indicator	Date	Date	Date	Date	Date
marcator	Taught	Retaught	Reviewed	Assessed	ReAssessed
Write ar	nd interpret r	numerical ex	pressions.		
5.OA.1. Use parentheses,					
brackets, or braces in numerical					
expressions, and evaluate					
expressions with these symbols.					
5.OA.2. Write simple					
expressions that record					
calculations with numbers, and					
interpret numerical expressions					
without evaluating them. For					
example, express the calculation					
"add 8 and 7, then multiply by 2"					
as $2 \times (8 + 7)$. Recognize that $3 \times$					
(18932 + 921) is three times as					
large as 18932 + 921, without					
having to calculate the indicated sum or product.					
·	yze patterns	and relation	nchine		
5.OA.3. Generate two numerical	yze patterns	and relation	1311103.		
patterns using two given rules.					
Identify apparent relationships					
between corresponding terms.					
Form ordered pairs consisting of					
corresponding terms from the					
two patterns, and graph the					
ordered pairs on a coordinate					
plane. For example, given the rule					
"Add 3" and the starting number 0,					
and given the rule "Add 6" and the					
starting number 0, generate terms					
in the resulting sequences, and					
observe that the terms in one					
sequence are twice the					
corresponding terms in the other					
sequence. Explain informally why					
this is so.					

	Gra	ue 5			
Numbe	r & Opera	ations in I	Base Ten		
Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
	erstand the p	lace value s	ystem.		T
5.NBT.1. Recognize that in a					
multi-digit number, a digit in					
one place represents 10 times as					
much as it represents in the					
place to its right and 1/10 of					
what it represents in the place					
to its left.					
5.NBT.2. Explain patterns in the					
number of zeros of the product					
when multiplying a number by					
powers of 10, and explain					
patterns in the placement of the					
decimal point when a decimal is					
multiplied or divided by a power					
of 10. Use whole-number					
exponents to denote powers of					
10.					
5.NBT.3. Read, write, and					
compare decimals to					
thousandths.					
Read and write decimals to					
thousandths using base-ten					
numerals, number names, and					
expanded form, e.g., 347.392 = $3 \times$					
100 + 4 × 10 + 7 × 1 + 3 × (1/10) + 9					
× (1/100) + 2 × (1/1000).					
Compare two decimals to					
thousandths based on meanings of					
the digits in each place, using >, =,					
and < symbols to record the results					
of comparisons. 5.NBT.4. Use place value					
understanding to round					
_					
decimals to any place.					

Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
Perform operations with mult	i-digit whole	numbers ar	nd with decir	mals to hund	lredths.
5.NBT.5. Fluently multiply multi-					
digit whole numbers using the					
standard algorithm.					
5.NBT.6. Find whole-number					
quotients of whole numbers					
with up to four-digit dividends					
and two-digit divisors, using					
strategies based on place value,					
the properties of operations,					
and/or the relationship					
between multiplication and					
division. Illustrate and explain					
the calculation by using					
equations, rectangular arrays,					
and/or area models.					
5.NBT.7. Add, subtract, multiply,					
and divide decimals to					
hundredths, using concrete					
models or drawings and					
strategies based on place value,					
properties of operations, and/or					
the relationship between					
addition and subtraction; relate					
the strategy to a written					
method and explain the					
reasoning used.					

Numbe	er & Oper	ations — F	ractions		
	•	Г	ı		
Indicator	Date Taught	Date Retaught	Date Reviewed	Date Assessed	Date ReAssessed
Use equivalent fracti					Reassesseu
5.NF.1. Add and subtract	0113 43 4 3614	tegy to dua	and Subtract	i ii actions.	
fractions with unlike					
	1				
denominators (including mixed	1				
numbers) by replacing given	1				
fractions with equivalent	1				
fractions in such a way as to	1				
produce an equivalent sum or	1				
difference of fractions with like	1				
denominators. For example, 2/3 +					
5/4 = 8/12 + 15/12 = 23/12. (In					
general, $a/b + c/d = (ad + bc)/bd$.)	<u> </u>				
5.NF.2. Solve word problems	1				
involving addition and					
subtraction of fractions referring	1				
to the same whole, including	1				
cases of unlike denominators,	1				
e.g., by using visual fraction	1				
models or equations to					
represent the problem. Use					
benchmark fractions and	1				
number sense of fractions to	1				
estimate mentally and assess					
the reasonableness of answers.					
For example, recognize an incorrect					
result $2/5 + 1/2 = 3/7$, by observing					
that 3/7 < 1/2.					

	Gia				
Indicator	Date	Date	Date	Date	Date
Apply and autond provious und	Taught	Retaught	Reviewed	Assessed	ReAssessed
Apply and extend previous und	•	•	ition and div	ision to mui	cipiy and
ENE 2 Interpret a firsting as	aiviae i	ractions.	l		l
5.NF.3. Interpret a fraction as					
division of the numerator by the					
denominator $(a/b = a \div b)$. Solve					
word problems involving division					
of whole numbers leading to					
answers in the form of fractions					
or mixed numbers, e.g., by using					
visual fraction models or					
equations to represent the					
problem. For example, interpret 3/4					
as the result of dividing 3 by 4, noting					
that 3/4 multiplied by 4 equals 3, and					
that when 3 wholes are shared equally					
among 4 people each person has a share of size 3/4. If 9 people want to					
share a 50-pound sack of rice equally					
by weight, how many pounds of rice					
should each person get? Between what					
two whole numbers does your answer					
lie?					
5.NF.4. Apply and extend					
previous understandings of					
multiplication to multiply a					
fraction or whole number by a					
fraction.					
Interpret the product $(a/b) \times q$ as a					
parts of a partition of q into b equal					
parts; equivalently, as the result of a					
sequence of operations $a \times q \div b$. For					
example, use a visual fraction model					
to show $(2/3) \times 4 = 8/3$, and create a					
story context for this equation. Do the same with $(2/3) \times (4/5) = 8/15$. (In					
general, $(a/b) \times (c/d) = ac/bd$.)					
Find the area of a rectangle with					
fractional side lengths by tiling it with					
unit squares of the appropriate unit					
fraction side lengths, and show that					
the area is the same as would be					
found by multiplying the side lengths.					
Multiply fractional side lengths to find					
areas of rectangles, and represent					
fraction products as rectangular					
areas.					

	011	aue J			
Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
5.NF.5. Interpret multiplication					
as scaling (resizing), by:					
Comparing the size of a product to					
the size of one factor on the basis of					
the size of the other factor, without					
performing the indicated					
multiplication.					
Explaining why multiplying a given					
number by a fraction greater than 1					
results in a product greater than the					
given number (recognizing					
multiplication by whole numbers					
greater than 1 as a familiar case);					
explaining why multiplying a given					
number by a fraction less than 1					
results in a product smaller than the					
given number; and relating the					
principle of fraction equivalence a/b					
$= (n \times a)/(n \times b)$ to the effect of					
multiplying a/b by 1.					
5.NF.6. Solve real world					
problems involving					
multiplication of fractions and					
mixed numbers, e.g., by using					
visual fraction models or					
equations to represent the					
problem.					

	Glade 5								
Indicator	Date	Date	Date	Date	Date				
	Taught	Retaught	Reviewed	Assessed	ReAssessed				
5.NF.7. Apply and extend									
previous understandings of									
division to divide unit fractions									
by whole numbers and whole									
numbers by unit fractions.									
Interpret division of a unit fraction									
by a non-zero whole number, and									
compute such quotients. For									
example, create a story context for									
$(1/3) \div 4$, and use a visual fraction									
model to show the quotient. Use the									
relationship between multiplication									
and division to explain that $(1/3) \div 4$									
= 1/12 because (1/12) × 4 = 1/3.									
Interpret division of a whole number									
by a unit fraction, and compute such									
quotients. For example, create a									
story context for $4 \div (1/5)$, and use a									
visual fraction model to show the									
quotient. Use the relationship									
between multiplication and division									
to explain that $4 \div (1/5) = 20$									
because $20 \times (1/5) = 4$.									
Solve real world problems involving									
division of unit fractions by non-zero									
whole numbers and division of									
whole numbers by unit fractions,									
e.g., by using visual fraction models									
and equations to represent the									
problem. For example, how much									
chocolate will each person get if 3									
people share 1/2 lb of chocolate									
equally? How many 1/3-cup									
servings are in 2 cups of raisins?									

Measurement and Data						
Indicator	Date	Date	Date	Date	Date	
	Taught	Retaught	Reviewed	Assessed	ReAssessed	
Convert like measurer	ment units w	ithin a giver	n measureme	ent system.		
5.MD.1. Convert among						
different-sized standard						
measurement units within a						
given measurement system						
(e.g., convert 5 cm to 0.05 m),						
and use these conversions in						
solving multi-step, real world						
problems.						
•	epresent and	l interpret d	ata.			
5.MD.2. Make a line plot to						
display a data set of						
measurements in fractions of a						
unit (1/2, 1/4, 1/8). Use						
operations on fractions for this						
grade to solve problems						
involving information presented						
in line plots. For example, given						
different measurements of liquid in						
identical beakers, find the amount						
of liquid each beaker would contain						
if the total amount in all the						
beakers were redistributed equally.						
Geometric measurement: underst	and concept	s of volume	and relate v	olume to mu	ultiplication	
	and to	addition.				
5.MD.3. Recognize volume as an						
attribute of solid figures and						
understand concepts of volume						
measurement.						
A cube with side length 1 unit, called						
a "unit cube," is said to have "one						
cubic unit" of volume, and can be						
used to measure volume.						
A solid figure which can be packed						
without gaps or overlaps using n						
unit cubes is said to have a volume						
of n cubic units.						
5.MD.4. Measure volumes by						
counting unit cubes, using cubic						
cm, cubic in, cubic ft, and						
improvised units.						

	0.0	iue J			
Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
5.MD.5. Relate volume to the					
operations of multiplication and					
addition and solve real world					
and mathematical problems					
involving volume.					
Find the volume of a right					
rectangular prism with whole-					
number side lengths by packing it					
with unit cubes, and show that the					
volume is the same as would be					
found by multiplying the edge					
lengths, equivalently by multiplying					
the height by the area of the base.					
Represent threefold whole-number					
products as volumes, e.g., to					
represent the associative property					
of multiplication.					
Apply the formulas $V = I \times w \times h$ and					
$V = b \times h$ for rectangular prisms to					
find volumes of right rectangular					
prisms with whole-number edge					
lengths in the context of solving real					
world and mathematical problems.					
Recognize volume as additive. Find					
volumes of solid figures composed					
of two non-overlapping right					
rectangular prisms by adding the					
volumes of the non-overlapping					
parts, applying this technique to					
solve real world problems.					

		uc 5			
	Geoi	metry			
Indicator	Date	Date	Date	Date	Date
	Taught	Retaught	Reviewed	Assessed	ReAssessed
Graph points on the coordinat	e plane to so	olve real-wo	rld and math	nematical pro	oblems.
5.G.1. Use a pair of perpendicular					
number lines, called axes, to					
define a coordinate system, with					
the intersection of the lines (the					
origin) arranged to coincide with					
the 0 on each line and a given					
point in the plane located by					
using an ordered pair of numbers,					
called its coordinates. Understand					
that the first number indicates					
how far to travel from the origin					
in the direction of one axis, and					
the second number indicates how					
far to travel in the direction of the					
second axis, with the convention					
that the names of the two axes					
and the coordinates correspond					
(e.g., x-axis and x-coordinate, y-					
axis and y-coordinate).					
5.G.2. Represent real world and					
mathematical problems by					
graphing points in the first					
quadrant of the coordinate plane,					
and interpret coordinate values					
of points in the context of the					
situation.					
Classify two-dimensiona	al figures into	categories	based on the	eir propertie	s.
5.G.3. Understand that attributes					
belonging to a category of two-					
dimensional figures also belong					
to all subcategories of that					
category. For example, all					
rectangles have four right angles					
and squares are rectangles, so all					
squares have four right angles.					
5.G.4. Classify two-dimensional					
figures in a hierarchy based on					
properties.					